Design of Programmable Logic System Based on FPGA Technology

(可编程逻辑系统设计与FPGA技术)

University of Chinese Academy of Sciences (中国科学院大学)

Prof. Haigang Yang (杨海钢)

Content

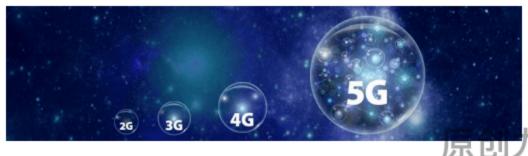
Chapter	Title	Class Hour
1	Introduction	1
2	Principle & Architecture of FPGA	4
3	Design of Logic Cluster in FPGA	6
4	Design of Interconnection in FPGA	6
5	CAD Tools: Synthesis	6
6	CAD Tools: Placement	4
7	CAD Tools: Routing Structures & Algorithms	6
8	Trend on FPGA Research & Development	3

System on Programmable Chip Research Laboratory

Future Trend for FPGA Development

SoC FPGA

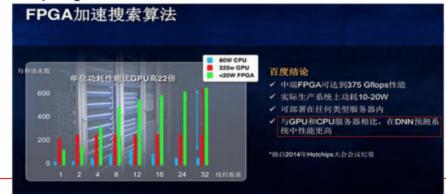
- □ System-on-Programmable-Chip (SoPC) Integration for FPGA
 - Heterogeneous architecture embedded with application domain specified processing cores such as microprocessors, DSP accelerators, etc.
- Software-defined FPGA
 - ✓ High Level Synthesis (e.g. OpenCL)
 - Fusion with microprocessor applications
- Customized FPGA design based on novel parallel processing architecture for high computational efficiency
 - Neural networks
 - ✓ Video/image processing、Artificial Intelligence



System on Programmable Chip I

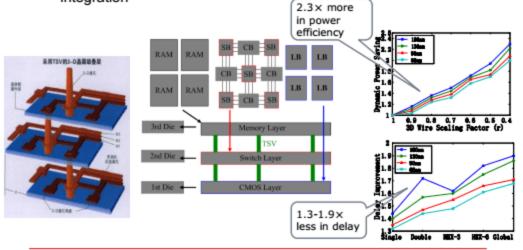
Future Trend for FPGA Development (cont.)

- Applications in the next generations of ultra high frequency communication systems
- The programmability of FPGAs provides a flexible implementation platform to lead the multiple standards, multiple frequency bandwidths, and multiple sub-networks technology advances



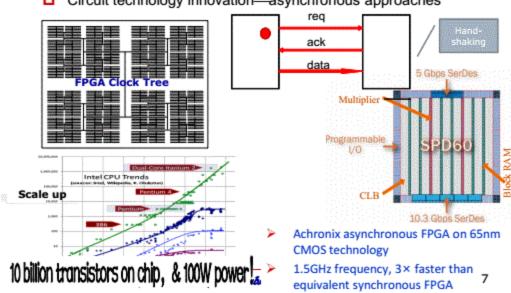
System on Programmable Chip Research Laboratory

Future Trend for FPGA Development (cont.)


- Applications in the new generation of data center, cloud computing etc 预览与源文档一致,下载高清无水印
- The parallel signal processing nature of FPGAs is capable of realizing the technology transitions of the Ethernet from 10G, 40G upto100G, and the hardware acceleration for energy efficient computing

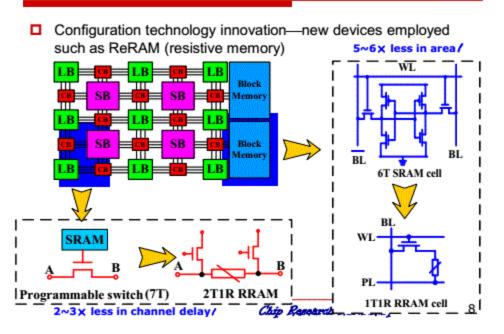
Research Directions in Giga-Scale FPGA

Chip packaging technology innovation (more than Moore)—3D integration


System on Programmable Chip Research Laboratory

6

Research Directions in Giga-Scale FPGA (cont.)

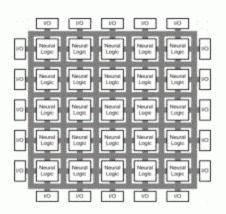


Circuit technology innovation—asynchronous approaches

Research Directions in Giga-Scale FPGA (cont.)

Research Directions in Giga-Scale FPGA (cont.)

- System technology innovation SoPC
 - "FPGA+CPU"
 - "FPGA+DSP"
 - "FPGA+ASIC"


System on Programmable Chip Research Laboratory

Research Directions in Giga-Scale FPGA (cont.)

cognitive computing

Architecture innovation - reconfigurable microstructures for

Unmanned Vehicle (Recognition of roads, vehicles and pedestrians)

Facial recognition and video surveillance

> In GOPS/W, 1000× more than CPU and 100× than GPU

System on Programmable Chip Research Laboratory

10

